夜空为什么黑暗?(三等奖)

作者:张天蓉

夜空为什么是黑暗的?这问题听起来太幼稚了,像是一个学龄前小孩问父母提问。其实不然,这是物理学中一个著名的佯谬:夜黑佯谬【1】

为什么天空在白天看起来是明亮的,夜晚看起来是黑暗的?表面上的道理人人都懂,不就是因为地球的自转,使得太阳东升西落,昼夜交替而造成的吗。当然,从物理的角度来看,还有大气的作用不能忽略。如果没有大气,天空背景本来就是黑暗的,白天也一样,太阳不过只是黑暗背景中一个特别明亮的光球而已,宇宙飞船中的宇航员在太空中看到的景象就是如此。

因为有了大气,才造成了地球上的日明夜黑。白天,也就是当我们所在的位置对着太阳的时候,太阳光受到空气分子和大气尘埃的多次散射,使得我们看向天空中的任何一个方向,都会有光线进入眼睛,所以我们感觉天空是到处明亮的天蓝色。夜晚到了,地球把它的“脸”转了一个180度,使我们背朝太阳,我们所在的地球上的“那个点”正好躲到了背对太阳的地球阴影下面,大气中不再有太阳的散射光芒,因而使天空看起来黑暗。

我们可以用如上方式向孩子们解释夜空为何黑暗。但是,有一位叫奥尔伯斯的古人不同意这种说法。奥尔伯斯是德国天文学家(Olbers ,1758–1840),他在1823年发表了一篇文章。针对与上面说法类似的解释,奥尔伯斯说:

“不对,晚上虽然没有太阳,还有其它的恒星啊!”

某个物理系的学生则说:

“大多数恒星离我们地球太远了,以至于我们看不见它们。因为恒星照到地球上的光度与距离平方成反比而衰减。”

然而,奥尔伯斯说:

“看不见个别的星球,不等于看不见它们相加合成的效果。所有恒星的光结合起来,也有可能被看到啊。”

的确是如此,好些个肉眼单独看不见的遥远恒星发出的光线之合成,可以达到被看见的效果。比如说,我们肉眼可以看见仙女座星系,但实际上这个星系中任何一颗恒星的亮度都没有达到能被肉眼看见的程度。整个仙女座星系能够被看见是其中所有恒星传来的光线合成的结果。另外,当我们抬头仰望银河的时候,看到的也是模模糊糊一片一片的白色,那也是许多星光合成的效果,用肉眼很难将它们分辨成一颗一颗单独的星星。

于是,这位学生表示同意地说:

“对,合成的效果可能使得星系能够被观测到,但仍然不够照亮夜空……”

奥尔伯斯:“但你忘了,星球数目有无限多啊!”

学生:“…………”

此物理系学生暂时无语,他在思考奥尔伯斯提及的“星球无限多”的问题。

那时候是牛顿的新物理学当道的年代,实际上布鲁诺很早就大胆预言了宇宙无限,康德后来也提出过空间中存在无数星系的想法,一个动态而无限的宇宙图景,使当时初见雏形的宇宙论走向科学。并且,无限宇宙的图景是与牛顿力学的绝对时空观念相符合的,比如说,牛顿第一定律认为不受外力作用、具有初速度的物体将作匀速直线运动,而这种运动只在无限的宇宙时空中才能实现。此外,从牛顿的万有引力定律,任何两个物体间的引力与距离平方成反比,当它们相距无穷远时引力为0,这点暗含着宇宙是无穷大、边界条件为0的假设。

因此,学生思索一阵之后说:

“无限的宇宙中星球数目的确是无限多,那又怎么样呢?”

奥尔伯斯笑了:

“那我们就来作一个中学生都能懂的计算,算算这无穷多个星球的光波传到地球上造成的合成效果有多大……”

图1:夜黑佯谬中光度的计算

奥尔伯斯认为,如果宇宙是无穷大、各向同性、星体均匀分布的话,就会得到夜晚的天空也应该明亮的结论【2】

如图1所示,因为宇宙是无穷大,地球上的人朝任何一个方向,比如图中的立体角A的方向观察,都能看到无限多的星球。从这些所有星球发出的(或者反射的)光传到地球上来,产生的光度的总和,便描述了这个观测方向上天空的亮度。如何求立体角A中观察到的这个总亮度呢?我们考虑距离地球为R处、厚度为R,包围着的一个壳层(球壳在立体角A中的部分)。如果用N表示宇宙中星球数的平均密度,上述壳层中星体的总数目则等于壳层体积乘以N。

厚度为R的壳层中星体的总数目=R2×A×R×N,

因为这个壳层中的星体与地球的距离为R,星体发出的光波到达地球时产生的光度需要除以R2,然后,再除以立体角A,便得到该壳层单位立体角对地球人观察到的光度的贡献:R×N。这儿?R是壳层的厚度,N是星球密度。

上面推导的最后结果与R无关,也就是说,无论距离地球的远近,每个壳层对光度的总贡献都是一样的,都等于R×N。虽然星光在地球上的亮度按照R2规律衰减,壳层离地球越远,亮度会越小。但是,壳层越远,同样的立体角中所能看到的星星数目便会越多,星体的数目也是按照R2的规律增加。因此,衰减和增加的两种效应互相抵消了,使得每个壳层对光度的贡献相同。然后,对给定立体角A上的所有壳层求和,即将所有的壳层厚度加起来,最后得到地球观察者看到的总亮度是R宇宙×N。这儿的R宇宙是宇宙的半径,如果宇宙是无限的,其半径等于无穷大,那么总亮度也会等于无穷大。每个方向的亮度都趋向无穷大的话,天空当然是一片明亮。由此,奥尔伯斯得出结论,夜空应该如白昼一样明亮。不过,这个结论并不符合观察的事实,我们看到的夜空是黑暗的,所以,奥尔伯斯宣布这是一个需要解决的佯谬。

事实上,早于奥尔伯斯几百年之前,已经有人提出这个问题。第一次提出的人是16世纪的英国天文学者迪格斯(Thomas Digges)。迪格斯还给出一个现在看来错误的解释,他认为夜空黑暗的原因是因为天体互相遮挡。之后的开普勒和哈雷也思考过这个问题,但均未给出令人满意的答案。

不过,这个学生仍然不想认输,耸耸肩膀对奥尔伯斯说:

“你在计算中假设恒星是均匀分布的,这点太不符合事实了,从我们所见天空的星象图看起来,星体的分布显然非常地不均匀……”

奥尔伯斯回答道:“所谓均匀是从宇宙学的角度而言,你看,宇宙是如此的浩瀚巨大,太阳只不过是3000万亿亿个恒星中的一个,在统计的意义上,大尺度来看,可以认为宇宙是均匀和各向同性的。这是宇宙学家们的假设,被称为‘宇宙学原理’……”

该物理系学生无话可说了。的确如此,从大尺度看宇宙,就像我们从宏观角度观察一小杯牛奶一样。牛奶看起来不也是均匀和各向同性的吗?学生记起了中学物理老师介绍过的“阿伏伽德罗常数”,那是个很大的数目(6.022*1023),表示一“摩尔”任何物质中包含的分子数。很小一小杯水就有好几个摩尔,由此可导出一杯牛奶中包含了庞大数目的分子和原子。但是,如果想象有某个只能看得见原子和分子级别的微观生物,从它的小范围角度进行观察的话,只能看见一个一个分离散开的原子和电子,是看不出这种大尺度的均匀性的。

看来这个“夜黑佯谬”的根源是来自于“宇宙无限”的模型,那就是说,如果假设宇宙是有限的,就有可能解释奥尔伯斯佯谬了。

令人惊奇的是,第一个用这种有限宇宙图景来解释夜黑佯谬的,不是天文学家,也不是物理学家,而是大名鼎鼎的美国诗人爱伦 · 坡(Edgar Allan Poe,1809年-1849年)。

爱伦 · 坡40年短暂的一生被贫穷、痛苦、黑暗所笼罩。他两岁丧母,壮年丧妻,赌博和酗酒贯穿他的悲惨人生,最后也成为他早逝的原因。爱伦 · 坡以其充满黑暗和恐怖色彩的诗歌和小说作品享誉世界。说句玩笑话,也许正因为爱伦 · 坡来自黑暗,吟唱书写黑暗,才最了解“夜黑”的原因。爱伦坡离世的前一年,破天荒地在教会做了一个惊世骇俗的演讲,之后整理成文,抛出一篇长达7万字的哲理散文诗《我发现了》<sup【3】< sup=””>,其中描述了爱伦·坡的宇宙观,解释了“夜黑佯谬”。尽管爱伦·坡的解释是从神学的观点出发,并非科学,但听起来与如今大爆炸宇宙模型似乎有异曲同工之妙。</sup【3】<>

《我发现了》中用这样一段话来解释夜空黑暗的原因:

“星若无穷尽,天空将明亮。仰望银河,君可见背景片片无点状?夜空暗黑,原因仅此一桩。光行万里,发于恒星之初创。抵达地球未及时,只因路遥道太长。”

根据爱伦·坡的解释,夜空没有被照亮是因为遥远恒星的光还没来得及到达地球,这个说法暗含了星体和宇宙皆为动态并且年龄有限的假设。

图2:大爆炸和光谱红移

现代宇宙学也基本上是如此来解释奥尔伯斯佯谬。

根据目前为止被学术界广泛接受的大爆炸模型【4】,宇宙大约开始于138亿年之前的时空大爆炸。而星体则形成于大爆炸后10亿年左右,见图2。因为光速是有限的,光传播到地球上需要时间。因此,地球上的观测者只能观察到有限年龄的宇宙,宇宙在时间上的有限也限制了我们可观测到的空间距离。也就是说,在地球上无法看到137亿光年之外的星星。正如爱伦 · 坡所说的那样,因为远处的星光还没有来得及到达我们这里!所以,我们能够看到的星星数目是有限的,这就使得我们不会在任何观测角度都能看到星星,因而使得天空的背景呈现“黑暗”一片。

也就是说,我们观察到的星空,不是完全像图1所描述的,无穷均匀宇宙中一个一个接连不断延续至无限远的壳层。我们仍然可以用立体观测角中的壳层来计算总亮度,见图2。但是,和使用无限宇宙模型时有所不同,观测范围不会无限地延续下去,因为图2中所示这些壳层所代表的是宇宙按照时间一步一步向“大爆炸”往回倒退的“过去”时,倒退的时间是有限的,最多只能一直退到大爆炸发生的那个奇点(138亿年)。所有的这些“过去”壳层传播到地球的光度的总和,构成了我们现在看到的天空。

现代科学对奥尔伯斯佯谬的解释中涉及到了大爆炸模型,这似乎又引起了另一个“佯谬”。根据大爆炸理论,极早期的宇宙对电磁波是不透明的,没有光线能够传递出来,见图2中大爆炸最开始的一小段。然而,大约在大爆炸后三十八万年左右,温度降低到3000K时,电子和原子核开始复合成原子,光子被大量原子反复散射。这段被称为“最终散射”的时期,远在星系形成之前(星系形成是在爆炸后10亿年左右)。因为星系尚未形成,宇宙是均匀而亮度极强的一团。这段时期强大的光辐射,是否会使得我们的夜空看起来显得分外明亮呢?

以上的问题很容易被宇宙膨胀而引起的光谱红移所解决。来自“最终散射”时期的光辐射,确实对我们的天空贡献巨大,但是,由于宇宙不断膨胀的缘故,这些“古老的光波”已经红移到了微波波长的范围。它们已经不是可见光,不能照亮夜空。这些大爆炸的余辉,在1964年被美国两位射电天文学家用无线电设备偶然探测到,将其称之为“微波背景辐射”。从那时候开始,微波背景辐射成为天文学家们探测宇宙演化历史的重要手段。

红移效应不仅仅使得“最终散射”时期的光波变成了微波背景辐射,也使得所有从遥远星系传播到地球的光波谱线向长波低频端移动,这种效应加强了“夜黑”的效果。

参考文献

【1】维基百科:奧伯斯佯谬

https://zh.wikipedia.org/wiki/%E5%A5%A7%E4%BC%AF%E6%96%AF%E4%BD%AF%E8%AC%AC

【2】Edward Robert Harrison,Darkness at Night: A Riddle of the Universe, Harvard University Press. (1987)

【3】Poe, Edgar Allan (1848). “Eureka: A Prose Poem”

【4】科学网博文:大爆炸宇宙模型

http://blog.sciencenet.cn/home.php?mod=space&uid=677221&do=blog&quickforward=1&id=851935

~~~欢迎转发~~~

!!!转载请联系我们获取授权!!!